

Deep Learning

Mohammad Ali Keyvanrad

Lecture 3:A Review of Artificial Neural Networks (2)

- Activation Functions
 - Sigmoid
 - Tanh
 - ReLU
 - Leaky ReLU
 - ELU
 - Maxout
- Neural Network architectures

- Activation Functions
 - Sigmoid
 - Tanh
 - ReLU
 - Leaky ReLU
 - ELU
 - Maxout
- Neural Network architectures

Biological motivation and connections

- The basic computational unit of the brain is a neuron.
 - Approximately 86 billion neurons
 - Approximately $10^{14} 10^{15}$ connections

Biological motivation and connections

- Each neuron
 - receives input signals from its dendrites
 - produces output signals along its (single) axon

Activation function f

the firing rate of the neuron

Types of Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x, x)$

Maxout

tanh

tanh(x)

$\max(x)$ $\max(w_1^T x + b_1, w_2^T x + b_2)$

 $\max(0, x)$

- Activation Functions
 - Sigmoid
 - Tanh
 - ReLU
 - Leaky ReLU
 - ELU
 - Maxout
- Neural Network architectures

Sigmoid

- Mathematical form: $\sigma(x) = \frac{1}{1+e^{-x}}$
- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron.

Sigmoid

Drawbacks

- 1. Sigmoids saturate and kill gradients
- if the local gradient is very small, it will "kill" the gradient
- must pay extra caution for initializing

2. exp() is a bit compute expensive

Sigmoid

Drawbacks

3. Sigmoid outputs are not zero-centered

- neurons in later layer receiving data that is not zero-centered
- data coming into a neuron is always positive
- the gradient on the weights w become either all be positive, or all negative

- Activation Functions
 - Sigmoid
 - Tanh
 - ReLU
 - Leaky ReLU
 - ELU
 - Maxout
- Neural Network architectures

Tanh

- Mathematical form: $2\sigma(2x) 1 = \frac{2}{1 + e^{-2x}} 1$
- Features
 - Squashes numbers to range [-1,1]
 - zero centered (nice)
 - still kills gradients when saturated
 - tanh() is a bit compute expensive

In practice the *tanh* non-linearity is always preferred to the *sigmoid* nonlinearity

- Activation Functions
 - Sigmoid
 - Tanh
 - ReLU
 - Leaky ReLU
 - ELU
 - Maxout
- Neural Network architectures

ReLU (Rectified Linear Unit)

- Mathematical form: $f(x) = \max(0, x)$
- Features
 - Maps numbers to range $[0, +\infty]$
 - Does not saturate (in +region)
 - Very computationally efficient
 - Converges much faster than sigmoid/tanh in practice (e.g. 6x) [Krizhevsky et al., 2012]
 - Actually more biologically plausible than sigmoid

$$F(x) = \max(0, x)$$

ReLU (Rectified Linear Unit)

Drawbacks

- Not zero-centered output
- 2. Saturate (in -region)

ReLU (Rectified Linear Unit)

Drawbacks

- 3. ReLU units can "die" during training
 - Dead neurons: neurons that never activate across the entire training dataset
 - 40% of your network can be "dead"
 - A large gradient could cause the weights to update in such a way that the neuron will never activate
 - With a proper setting of the learning rate this is less frequently an issue.

- Activation Functions
 - Sigmoid
 - Tanh
 - ReLU
 - Leaky ReLU
 - ELU
 - Maxout
- Neural Network architectures

Leaky ReLU and Parametric ReLU

Mathematical form:

- LReLU: $f(x) = \max(0.01x, x)$
- PReLU: $f(x) = \max(\alpha x, x)$

Leaky ReLU

Features

- Maps numbers to range $[-\infty, +\infty]$
- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- Will not "die"
- Some people report success but the results are not always consistent

Parametric ReLU

α also learned by gradient descent

[Mass et al., 2013]

[He et al., 2015]

- Activation Functions
 - Sigmoid
 - Tanh
 - ReLU
 - Leaky ReLU
 - **ELU**
 - Maxout
- Neural Network architectures

Exponential Linear Units (ELU)

Mathematical form:

$$f(x) = \begin{cases} x & x > 0 \\ \alpha(\exp(x) - 1) & x \le 0 \end{cases}$$

- Features
 - Maps numbers to range [-α, +∞]
 - All benefits of ReLU
 - Closer to zero mean outputs

Clevert et al., 2015

- Activation Functions
 - Sigmoid
 - Tanh
 - ReLU
 - Leaky ReLU
 - ELU
 - Maxout
- Neural Network architectures

Maxout

Mathematical form:

$$f(x) = max(w_1^T x + b_1, w_2^T x + b_2)$$

- Features
 - Maps numbers to range $[?, +\infty]$
 - Generalizes ReLU and Leaky ReLU
 - Linear Regime!
 - Does not saturate!
 - Does not die!

Doubles the number of parameters/neuron

[Goodfellow et al., 2013]

TLDR; In practice

- What neuron type should I use?
 - Use ReLU. Be careful with your learning rates
 - Try out Leaky ReLU / Maxout / ELU
 - Try out tanh but don't expect much
 - Don't use sigmoid

- Activation Functions
 - Sigmoid
 - Tanh
 - ReLU
 - Leaky ReLU
 - ELU
 - Maxout
- Neural Network architectures

Layer-wise organization

- N-layer neural network
 - we do not count the input layer

A 2-layer Neural Network (3-4-2) 4 + 2 = 6 neurons (not counting the inputs) $[3 \times 4] + [4 \times 2] = 20$ weights 4 + 2 = 6 biases 26 learnable parameters

A 3-layer Neural Network (3-4-4-1) 4 + 4 + 1 = 9 neurons $[3 \times 4] + [4 \times 4] + [4 \times 1] = 12 + 16 + 4 = 32$ weights 4 + 4 + 1 = 9 biases 41 learnable parameters

Setting number of layers and their sizes

Size and number of layers $\uparrow \Rightarrow$ Capacity of the network \uparrow

It is easier to overfit the training data

Setting number of layers and their sizes

- It seems that smaller neural networks can be preferred if the data is not complex
 - This is incorrect
- There are many other preferred ways to prevent overfitting in Neural Networks
 - L2 regularization
 - Dropout
 - Input noise

Setting number of layers and their sizes

- The effects of regularization strength
 - Each neural network above has 20 hidden neurons

References

 Stanford "Convolutional Neural Networks for Visual Recognition" course (<u>Training Neural Networks</u>, part I) امام علی (ع): اقْبِلْ عُذْرً أَخِيكَ، وَ إِنْ لَمْ يَكُنْ لَهُ عُذْرٌ فَالْتَمِسْ لَهُ عُذْراً عذر برادرت را بپذیر و اگر عذری نداشت، عذری برایش بتراش.

Accept your brother's apology, and even if he has no excuse, you bring him an excuse.

۱۶۵ م ۷۴ م ۱۶۵

