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Lecture 7: A quick review of Probabilistic Graphical Models
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Probabilistic Graphical Models

°* PGMs are declarative representation of our
understanding of the world

(oﬁmn.sm.}/ PrimbtuOuH Printto Fie ) 1S)

(" Correct Printer Selection (Mot Printer Pathname )  ( Network Connection )

(' Cabla/Port Hardware | / |
. >mrm) (' NET Transport (Print lcon Appearance )
Local Printer Cable

(" Local Paper Supply Net Printer On and Online )
Local Printer OK ) (" Not Printer OK

Nt Printer Paper Supply )

. A

( Printor Location ) »(_ Printer Output

M.A Keyvanrad, Deep Learning ) ick review of PGMs



Probabilistic Graphical Models

Model

Inference

Probabilistic Graphical Models, instructor: Dr. Ahmad Nickabadi
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Probabilistic Graphical Models

PGMs can handle uncertainty

Partial knowledge of state of
the world

Partial and noisy observations &
Phenomena not covered by |l
our model

Inherent non-determinism of
the world

\ grount:
cluﬁér \

Propagahon
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Probabilistic Graphical Models

Node, Edge, Directed/Undirected edge, Parent-
Child, Neighbor, Node degree, Indegree,
Subgraph, Complete subgraph (clique)
Maximal clique, Path, trail,

Cycle, DAG, Loop, Tree, Q e
Triangulated graph

Probabilistic Graphical Models, instructor: Dr. Ahmad Nickabadi
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Probabilistic Graphical Models

* Representation * Applications:

— Directed — Medical diagnosis
— Undirected — Fault diagnosis

e Inference — Natural language processing
 Exact — Traffic analysis

— Approximate — Computer vision

_ — Speech recognition
* Learning

— Parameters

— Robot localization and mapping

— Structure

Probabilistic Graphical Models, instructor: Dr. Ahmad Nickabadi
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Bayesian Networks

° Bayesian Network is a Directed Acyclic Graph, DAG.

° Provides a compact factorized representation of a joint
distribution a

°* Nodes: random variables
* Edges: direct influences (causality)

° Generative Modeling ¢
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Object Position Orientation

Bayesian Networks Q O
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Sun, Min, Hao Su, Silvio Savarese, and Li Fei-Fei, A Multi-View Probabilistic Model for 3D Object Classes, 2009
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BNs,
General Factorization Property

PRML, C. Bishop
p(351, e ,337) — p(m1)p(x2)p(x3)p(w4|x1, Io, 933)

p(xs|zr, x3)p(Te|Ta)p(27|T4, 25)

BNs, General Factorization

K
p(x) = | [ p(zx|pay,)
k=1

Chain Rule: p(il?h---,ﬂfK) :p($K|$1, “ e ,$K—1) .- -p($2|$1)p($1)
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Zn

Some Conventions ~—

* Plate

* Observable Variables

* Parameters

[ ™ w
OO0
X NJ Ln Qx
N
p(t,w) = p(w) [ | p(tn|w)
n=1 W
N " Ie
p(t, w|x, a, 0?) = p(w|a) H p(tn|W, zp, 0%) tn -
n=1 \ /7 PRML, C. Bishop
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Student Example

* A BN related to a student and an specific course
° Grade

* Course Difficulty

* Student Intelligence
° Student SAT

* Reference Letter

Intelligence

PGM, D. Koller
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Conditional Probability
Distribution | Table, CPD(T)

P(I,S) = P(I)P(S | I) 0
07 03
I S |P(IS)
-0 0 =
?:U 81 gggi I SD 81
L7 6660 017005 0.05
1 S . .
il 094 it | 02 08
p(xnlzn = k) = p(xy; Ui, Zg)
p(xplzn = K)p(z, = k) = p(xy; Uy, Zp)my # —— X
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Student Example

d | a 0] 7

Let’s check all CPTs! gl |o1 |09
g’ 104 |06
23| 099|001 PGM, D. Koller
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Student Example

Factorization simplifies joint representation

0.01197 Lets’ check some
d° iO g1 SO 11 0.10773 of this table rows
d® i® g* st 1°  0.00063
d® i® gt st ' 0.00567
dO iO gZ SO lO
d° i0 gz g0 1
dO iO g2 Sl lO
dO iO gZ Sl ll
dO iO gB SO lO
dO iO g3 SO ll
a®> i° g st 0° g ot |oo
0 -0 3 1 1 g’ |04 |06
d L g S [ 23 | 099 | 001
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Student Example, Inference

° PB(Y =y|E = e) d | a ] 7

gllo1 |09
g’ |04 |06
P(I,D.G,S,L)=P(I)P(D)P(G|I,D)P(S|I)P(L|G) 231099001

PGM, D. Koller
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PGM, D. Koller

Student Example, Inference @

* Conditioning on g1, Pz (I, D|g")

Reduction ’>

I D 7 Prob. VT D G Prob.

0 do g' 0.126 i© d° g 0.126

g —do_ g2 0168

{0 —d° g3 0126 |

i0 dl g' 0.009 i0 d! g' 0.009

i® ——dl_ Lz 0.045

- & ¢ 0126 |

il do° g' 0.252 it d° g' 0.252

i de— g 6:6224

4 = aa -¢=—10.0056

i d! 1 0.06 i d! g' 0.06
- —dl— | g2 | 9036
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Student Example, Inference

* Conditioning on g1, Pz (I, D|g")

Re-normalization >

- -
i g A i0
i0 d! g' 0.009 :o 3(1) (2)20822
il dO gl 0.252 1 do .
il d! g! 0.06 . —
o 1 gt 0.134
(L.5.99 0.447 P(T, D | gY)
PB (yr 8)
Pg(Y = y|E =) =
B( y| 9) Py (e) — Zy Pg (y, e) PGM, D. Koller
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Student Example, Inference

Marginalization >

I D Prob.
o d° 0.282 D Prob_
5 Ji 0.02 % & 0.846
it d° 0.564 d! 0.154
i! d! 0.134

P(I.D | g P(D|g")

P(DIg") = ) PU,DIg"
I

PGM, D. Koller
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Student Example:
Causal reasoning, Prediction

* P,(1Y) = 0.502
* P,(11[i% = 0.389
* Pp(11]i% d°) = 0.51

gtlo1 oo
g?|o4 |06
g3 | 099|001 PGM, D. Koller
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Student Example:
Evidential reasoning, Explanation

* Pg(it) = 0.3

* P5(illg3) = 0.079
* P(il|l°) = 0.14

* Pg(d) = 0.4 _
* Py(d|g3) = 0.629 .

it.d°
il.d!
gl n._1 0.9
* Pg(it|g®,1°) = 0.079 g [0+ [os
g’ 099001 PGM, D. Koller
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Student Example:
Inter-causal reasoning o, Kol

* Pg(i'|g®) = 0079 4=
* P(itlg®,dY) = 0.11

i% d¢
i%. dl

it.d®
it.d!
* Pg(it|g?) = 0.175 .
* Pg(it|g%,d') =0.34 g‘? o1 {09
231099 | 001

We have explained away the poor grade via the difficulty of class
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Conditional Independence

* ais independent of b given Cc

plalb, c) = p(alc)

° Equivalently p(a,b|c) — p(a|b,0)p(b|0)
= p(ale)p(blc)

* Notation al b|c
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Causal Trail, Evidential Trail
Common Cause, Common Effect

Causal Trail & Evidential Trail are active if and only if “Flooding” is not observed

: . Common
Intelligence Allergies
DL Course M.Sc. Thesis Rhinorrhea
Grade Grade

(runny nose)
Common cause trail is active if and only if = Common Effect trail is active if and only if either
“Intelligence” is not observed “Rhinorrhea” or one of its parents is observed
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Bayesian Networks

°* BN is a DAG.
° Generative Modeling
* General Factorization Property

°* BN is a legal distribution P = 0
— P is product of CPDs

* BN is a legal distribution ), P =1 ‘
— Each CPD is legal in this sense

* BN captures independent assumptions about variables
— BN simplifies the joint using these assumptions
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Bayesian Networks:
An example: Naive Bayes Model

* A simple model for classification

* Class variable is a discrete variable

° X;s are feature variables

° Reasoning pattern: evidential reasoning
o P(C,X1,....X,) = P(O)ﬁP(Xi | C)

“ X, LX|C, Vi#j

PGM, D. Koller

° Effective in domains with weakly
relevant features
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Distribution over trajectories

* Time or space stochastic process

K. P. Murphy

210 210 210

141 | 4 observed

200 200 1 200F .o
{" —¢ estimated
190 190+ { 190 "H*,},z,ﬂ

180 !’ 180~ ‘.’i 1 180
170 170 170
0 20 40 -20 0 20 0 10 20

2007 7y 210 200
»
90; ‘/ 200 - : 1 100l b
1 ‘
hoeeeee® g 190+ 1 by
o : 180} :
. 180+ . ,
180+ ° » ;
s 170} H | 170;
4t
170 160 160
0 20 40 ~ 50 0 50 50 0 50

10 12 14 16 18 20 22 24
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Simplifying Assumptions

° Select a time granularity, A
* X; variable at time t
° X{.; variables fromtime 1 to t

* Objective: Model X{.7 "™

205.00

195.00

185.00

175.00

165.00

Jan'13 Jul"3 Jan'14 Jul'14 Jan 15 Juls
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Simplifying Assumptions

* Objective: Model X;.7

* Chain rule:

. P(Xl:T) — P(X1) HLZ P(Xt|X1:t—1)
* Markov Assumption:

= Xev1 L X1 | X2

~ P(Xy.p) = P(X0) [T{=2 P(X¢ X —1)
* Time Invariance:

. P(thXt—l) — P(X'|X)

PGM, D. Koller
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2 Time-Slice Bayesian Network

° B_, is a 2-TBN for the process
— It defines P(X;|X:—1)
~ Using a DAG as P(X;|X;—1) = [Tj2; P(X{|Pa(X})) rom o roler

\ eathery—>Peathery—>Peather

/
Weather @
N
Velocity @ ‘ ‘
\ oo\ Clocaion o Clocaio

e

Location Location’

bogn

Fuailure Failure'

Time slice 2

VAN

Time slice 0 Time slice 1

Time slice ¢ Time slice r + 1

10/26/2017 M.A Keyvanrad, Deep Learning (Lecture 7, A quick review of PGMs)



Dynamic Bayesian Network

* ADBN is a pair (B, B_,)

e B4 is a Bayesian network
over Xy

— defines prior P(X;) or G

initial distribution over

eather
St d te S @ Velocity @

°* B, is a 2-TBN for the
process

Weather'

Location?

Location Location'

AR

Failure Failure'

AN
Time slice 0 Time slice ¢ Time slice r + 1

PGM, D. Koller
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State-space models

K. P. Murphy

° we assume that there is some underlying
hidden state of the world

— in the controlled case, the hidden state is a
function of our inputs

— the hidden state evolves in time

— the hidden state generates observations

° |In other word: A state-space model is a model
of how X; generates or “causes” Y; and X;,

&

° Mainly: the goal of inference is to invert this

mapping
— i.e.:toinfer X;.; given Y;.¢

Shatha
Shathat
Shat)
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State-space models

K. P. Murphy

° Any state-space model must define
— a prior over states, P(X;)
— state-transition function, P(X;|X;_;) <[ system mode ]

— observation function, P(Y;|X;) Observation]

model

* In the controlled case, these become

— P(X¢|X¢-1, Up) @
— P(Y;|X¢, Up) or P(Y¢| X, )

10/26/2017 M.A Keyvanrad, Deep Learning (Lecture 7, A quick review of PGMs)



State-space models
HMMs, KFMs

K. P. Murphy

* the most common ways of representing state-space
models are

— Hidden Markov Models (HMMs)

— HMMs assume X; is a discrete random variable, X; € {1, ..., K}

— There is no other restrictions on the transition or observation
function

— Kalman Filter Models (KFMs)

— KFMs assume X; is a vector of continuous random variables
X; RN
— Xq{.7 and Y;.7 are jointly Gaussian

10/26/2017 M.A Keyvanrad, Deep Learning (Lecture 7, A quick review of PGMs)
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Inference Patterns:
Filtering

° Filtering is common inference problem in online analysis

* recursively estimate the belief state P(X;|y;.;) using
Bayes’ rule

) Xt|t—1 = P(X¢|y1:6-1)
— Xi|¢—1 is called prior belief state at time t
) Xt|t = P(X¢|y1:t-1, V)= P(X¢|y1:e)

° This task is traditionally called “filtering”
— because we are filtering out the noise from the observations

10/26/2017 M.A Keyvanrad, Deep Learning (Lecture 7, A quick review of PGMs)



Inference Patterns:
Smoothing

* sometimes we want to estimate the state of the past,
given all the evidence up to the current time

* P(Xi_i|y1.¢),£ > 0, £ is called lag
— This is traditionally called “fixed-lag smoothing”

* (fixed interval) Smoothing:
— in the offline case, we can compute:

~ P(X¢ly1r); V1I<t<T

—

10/26/2017 M.A Keyvanrad, Deep Learning (Lecture 7, A quick review of PGMs)



Inference Patterns:
Prediction

* we might want to predict the future

* P(Yesn = Y|y1.e), A >0
— #is how far we want to look-ahead

° once we have predicted the future hidden state

— we can easily convert this into a prediction about the
future observations

— by marginalizing out X, »

10/26/2017 M.A Keyvanrad, Deep Learning (Lecture 7, A quick review of PGMs)



Inference Patterns:
Control

* We might want to achieve to some desired output in
the future

* Yi4p is the desired output value

° Find the best control parameters over u;

10/26/2017 M.A Keyvanrad, Deep Learning (Lecture 7, A quick review of PGMs)



Inference Patterns:
Decoding

°* The goal is to compute the most likely sequence of
hidden states given the data

— computing the “most probable explanation”

* x1.7 = arg max P(x1.7|y1.7)
X1:T

10/26/2017 M.A Keyvanrad, Deep Learning (Lecture 7, A quick review of PGMs)



Inference Patterns:
Classification

* likelihood of a model, M, is P(y1.:|M):

° we can classify a sequence as follows:

* C*(yyur) = argmL?XP(Y1:T|MC)P(MC)

— P(y1.7|M¢) is the likelihood according to the model for
class C

— P(M_) is the prior for class C

°* This method has the advantage of being able to
handle sequences of variable-length

10/26/2017 M.A Keyvanrad, Deep Learning (Lecture 7, A quick review of PGMs)
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Markov Networks or
Markov Random Fields

° undirected graphs
° The joint distribution of an MRF is "
defined by: , ,
1
p0) = [ [ gex0 -

ceC H
— C is the set of maximal cliques

— ¢.(X,) are potential functions over C. Bishop
cligues (¢ € C)

— X, is the set of clique variables

— Z in the normalization factor: Z= ZH¢C(XC)

X ceC K. P. Murphy
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Cliques and Maximal Cliques

* Cligue is a subset of a graph in which

all nodes are connected together @:ﬂl //>

* In the following example: a
~ Cliques are: {xy, %3}, Oz xe), (s xsd, Y
{x1,x3} , {xa,x3} , {x1,x2,x3}

{xz»x3»x4} CC/IE 3’4@

° In maximal cligues we can not add
any new node to the clique without
it ceasing to be a clique
— Maximal cliques are: {xq{,x,,x3},

{XZ,X3,X4_}

C. Bishop
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The misconception example
mm- [ neither of two have } m?

100 the misconception

0 1 1 0 1 5
1 0 1 1 0 1
1 1 1 1 10

—1
Like to agree Affinity between
values
Like to disagree

i
| MAK | MMK | ¢ m mm-
0 1

0 100
0 1 100 0 1 1
1 0 100 1 0 1
1 1 1 1 1 100
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The joint distribution

Unnormalized

Normalized

Assignment
a® | B0 | &P | d°
a® | B0 | 0| d1
a® | B0 | et | d°
a | B0 | ¢t | dt
a® | bt | O] Y
a | bt | 0| dt
a® | bt | et | dY
a | bt | | dl
at | b9 | V| d°
at | B | | dt
at | B° | et | dY
at | B° | et | dt
at | bt | Y| Y
at | bt | Y| dt
at | bt | et | dY
at | bt | et | dt
D. Koller

10/26/2017

300, 000
300, 000
300, 000
30

500

500
5,000, 000
500

100

1, 000, 000
100

100

10

100, 000
100, 000
100, 000

Z=Zﬁ(x)
X

0.04

0.04

0.04
41-107°
6.9-107°
6.9-107°
0.69
6.9-107°
1.4-107°
0.14
1.4-107°
1.4-107°
1.4-107°
0.014
0.014
0.014

Pe0) = | e

CEC

0 0 100 0 o0 30
o 1 1 0 1 5
1 o0 1 1 o0 1
1 1 100 1 1 10

0 100
1 100 0 1 1
0 100 1 0 1
1 1 1 1 100
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So, what do factors means?

° In your opinion, the factor 1
¢1(A, B) is proportional to: P(X) = gl_C[qbc(Xc)
X CE

—The marginal probability puwers A B |y

P(A, B) 0 0 100 0 0 30
0 1 1 0 1 5
— The conditional probability 1 0 1 1 0 1
p(AlB) 1 1 100 1 1 10
— The conditional probability

P(A,B|C,D) Tc o |9 n
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So, what do factors means?

* Pp(A,B), ® = {1, P2, P3, Py} e
D | A |y A | B |y

A B Prob. 0 0 100 0 0 30
a’ b° 0.13 0o 1 1 0 1 5
a© b! 0.69 1 o0 1 1 o

a! b° 0.14 1 1 100 1 1 10

R Coo o G

In the MRFs, there is not a natural 0
mapping between the probability 0 1 100 0 1 1
distribution and t.he factors that are 1 0 100 1 0 1
used to compose it.

1 1 1 1 1 100
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Equivalent representation using

energy functions
1
P(x) — Zl_[ ¢C(Xc) {Gibbs distribution]
ceC

° Energy function:
E(Xc) - = log(¢c(xc))
* Equivalent representation:

P(X) X exp _ZE(X‘C) ﬁ Boltzmann distribution ]

[ [expl-Ecron

cEC
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Log linear models

* Alog linear model is defined by:
— a set of features F{f1(X7), ..., fx (Xi)}

— a set of weights wy, ..., Wy

again X;s are
maximal cliques

* such that:

- |
PX)  exp |~ ) wifi(X)
B l=1 -
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Image de-noising example

C. Bishop

Flipping pixel color prob. is 10%
We have an array of noisy image pixels (y;s)

We want to infer original image (x;s)
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Image de-noising example,
embedding our prior knowledge

y; and x;s are strongly correlated
(sine noise level is small)

that neighboring pixels x; and x;s in an image are strongly
correlated

Construct an MRF using this prior knowledge

L.

ke,
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Image de-noising example,
model as a pairwise MRF I
o]

* The graph has two types of cliques: ’

— each of which contains two variables Jf/ Jj/
(a pairwise MRF) }_/ }J
o {xi' yl} and {xi' x]} C. Bishop

— Xj € {_1; 1}1 Vi € {_11 1}
*-nxiy; n>0 Bag-s'
“ —IBXin IB >0

*EX,Y) = hX;x; — B Xg jyxixj — 1 2 XY
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Image de-noising example, I I
inference using ICM oL

E(X,Y) =h¥ixi = B Ly xixg —nXixye 7
h=0,=10,n=21

E(x;=1)=21-(1-1+1+1)=0.
p « exp|—E] Now, what if B = 07?
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Image de-noising example,
de-noising results

C. Bishop

Graph cut
algorithm

ICM algorithm
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MRF Examples:
Boltzmann Machines

Boltzmann Machine Restricted Boltzmann Machine

Hidden units

Visible units

L X X AR
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