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Probabilistic Graphical Models

• PGMs are declarative representation of our
understanding of the world

̶ Computer-based representation (variables, relations)

̶ The representation stands on its own (declarative)

̶ One model, different inference algorithms

̶ Separation of knowledge and reasoning

̶ Prevents use of special-purpose algorithms
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Probabilistic Graphical Models

Probabilistic Graphical Models, instructor: Dr. Ahmad Nickabadi
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Probabilistic Graphical Models

• PGMs can handle uncertainty

̶ Partial knowledge of state of
the world

̶ Partial and noisy observations

̶ Phenomena not covered by
our model

̶ Inherent non-determinism of
the world
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Probabilistic Graphical Models

• Representation

̶ Directed

̶ Undirected

• Inference

̶ Exact

̶ Approximate

• Learning

̶ Parameters

̶ Structure

• Applications:

̶ Medical diagnosis

̶ Fault diagnosis

̶ Natural language processing

̶ Traffic analysis

̶ Computer vision

̶ Speech recognition

̶ Robot localization and mapping

Probabilistic Graphical Models, instructor: Dr. Ahmad Nickabadi
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Bayesian Networks

• Bayesian Network is a Directed Acyclic Graph, DAG.

• Provides a compact factorized representation of a joint
distribution

• Nodes: random variables

• Edges: direct influences (causality)

• Generative Modeling
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Bayesian Networks

An example: Causal Process for generating images

Sun, Min, Hao Su, Silvio Savarese, and Li Fei-Fei, A Multi-View Probabilistic Model for 3D Object Classes, 2009
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BNs,
General Factorization Property

BNs, General Factorization

Chain Rule:

PRML, C. Bishop
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Some Conventions

• Plate

• Observable Variables

• Parameters

PRML, C. Bishop
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Student Example

• A BN related to a student and an specific course

• Grade

• Course Difficulty

• Student Intelligence

• Student SAT

• Reference Letter

PGM, D. Koller
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Conditional Probability 
Distribution | Table, CPD(T)

I

S

𝑝 𝒙𝑛|𝑧𝑛 = 𝑘 = 𝑝 𝒙𝑛; 𝝁𝑘 , 𝚺𝑘

𝑝 𝒙𝑛|𝑧𝑛 = 𝑘 𝑝 𝑧𝑛 = 𝑘 = 𝑝 𝒙𝑛; 𝝁𝑘 , 𝚺𝑘 𝜋𝑘
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Student Example

Let’s check all CPTs!

PGM, D. Koller
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Student Example
Factorization simplifies joint representation

D I G S L 𝑃𝐵

𝑑0 𝑖0 𝑔1 𝑠0 𝑙0 0.01197

𝑑0 𝑖0 𝑔1 𝑠0 𝑙1 0.10773

𝑑0 𝑖0 𝑔1 𝑠1 𝑙0 0.00063

𝑑0 𝑖0 𝑔1 𝑠1 𝑙1 0.00567

𝑑0 𝑖0 𝑔2 𝑠0 𝑙0 …

𝑑0 𝑖0 𝑔2 𝑠0 𝑙1 …

𝑑0 𝑖0 𝑔2 𝑠1 𝑙0 …

𝑑0 𝑖0 𝑔2 𝑠1 𝑙1 …

𝑑0 𝑖0 𝑔3 𝑠0 𝑙0 …

𝑑0 𝑖0 𝑔3 𝑠0 𝑙1 …

𝑑0 𝑖0 𝑔3 𝑠1 𝑙0 …

𝑑0 𝑖0 𝑔3 𝑠1 𝑙1 …

… … … … … …

Lets’ check some 
of this table rows
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Student Example, Inference

• 𝑃𝐵 𝑌 = 𝑦|𝐸 = 𝑒

PGM, D. Koller
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Student Example, Inference

• Conditioning on 𝑔1, 𝑃𝐵 𝐼, 𝐷|𝑔1

Reduction

PGM, D. Koller

I

G

D
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Student Example, Inference

• Conditioning on 𝑔1, 𝑃𝐵 𝐼, 𝐷|𝑔1

Re-normalization

𝑃𝐵 𝑌 = 𝑦|𝐸 = 𝑒 =
𝑃𝐵 𝑦, 𝑒

𝑃𝐵 𝑒 = σ𝑦𝑃𝐵 𝑦, 𝑒
PGM, D. Koller
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Student Example, Inference

Marginalization

𝑃(𝐷|𝑔1)

𝑃 𝐷 𝑔1 =෍

𝐼

𝑃 𝐼, 𝐷|𝑔1

PGM, D. Koller
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Student Example:
Causal reasoning, Prediction

• 𝑃𝐵 𝑙1 = 0.502

• 𝑃𝐵 𝑙1|𝑖0 = 0.389

• 𝑃𝐵 𝑙1|𝑖0, 𝑑0 = 0.513

PGM, D. Koller
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Student Example:
Evidential reasoning, Explanation

• 𝑃𝐵 𝑖1 = 0.3

• 𝑃𝐵 𝑖1|𝑔3 = 0.079

• 𝑃𝐵 𝑖1|𝑙0 = 0.14

• 𝑃𝐵 𝑑1 = 0.4

• 𝑃𝐵 𝑑1|𝑔3 = 0.629

• 𝑃𝐵 𝑖1|𝑔3 , 𝑙0 = 0.079
PGM, D. Koller
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Student Example:
Inter-causal reasoning

• 𝑃𝐵 𝑖1|𝑔3 = 0.079

• 𝑃𝐵 𝑖1|𝑔3, 𝑑1 = 0.11

• 𝑃𝐵 𝑖1|𝑔2 = 0.175

• 𝑃𝐵 𝑖1|𝑔2, 𝑑1 = 0.34

We have explained away the poor grade via the difficulty of class

PGM, D. Koller
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Conditional Independence

• a is independent of b given c

• Equivalently

• Notation
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Causal Trail, Evidential Trail
Common Cause, Common Effect

Rainfall Flooding Destruction

Causal Trail & Evidential Trail are active if and only if “Flooding” is not observed

DL Course 

Grade

Intelligence

M.Sc. Thesis 

Grade

Common cause trail is active if and only if 
“Intelligence” is not observed

Allergies

Rhinorrhea

(runny nose)

Common 

Cold

Common Effect trail is active if and only if either 
“Rhinorrhea” or one of its parents is observed
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Bayesian Networks

• BN is a DAG.

• Generative Modeling

• General Factorization Property

• BN is a legal distribution 𝑃 ≥ 0
̶ P is product of CPDs

• BN is a legal distribution σ𝑃 = 1
̶ Each CPD is legal in this sense

• BN captures independent assumptions about variables
̶ BN simplifies the joint using these assumptions
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Bayesian Networks:
An example: Naïve Bayes Model

• A simple model for classification

• Class variable is a discrete variable

• 𝑋𝑖s are feature variables

• Reasoning pattern: evidential reasoning

•

• 𝑋𝑖 ⊥ 𝑋𝑗 | 𝐶, ∀ 𝑖 ≠ 𝑗

• Effective in domains with weakly
relevant features

PGM, D. Koller



OUTLINE • Probabilistic Graphical Models

• Bayesian Networks

• Dynamic Bayesian Networks
̶ Time-series, Stochastic Processes

̶ 2-TBN, DBN

̶ State-space models, HMMs, KFMs

̶ Inference Patterns

• Markov Random Fields

M.A Keyvanrad, Deep Learning  (Lecture 7, A quick review of PGMs)10/26/2017 32



10/26/2017 M.A Keyvanrad, Deep Learning  (Lecture 7, A quick review of PGMs) 33

Distribution over trajectories

• Time or space stochastic process
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K. P. Murphy
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Simplifying Assumptions

• Select a time granularity, Δ

• 𝑋𝑡 variable at time t

• 𝑋1:𝑡 variables from time 1 to t

• Objective: Model 𝑋1:𝑇
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Simplifying Assumptions

• Objective: Model 𝑋1:𝑇

• Chain rule:
̶ 𝑃 𝑋1:𝑇 = 𝑃 𝑋1 ς𝑡=2

𝑇 𝑃 𝑋𝑡|𝑋1:𝑡−1

• Markov Assumption:
̶ 𝑋𝑡+1 ⊥ 𝑋1:𝑡−1 | 𝑋𝑡
̶ 𝑃 𝑋1:𝑇 = 𝑃 𝑋1 ς𝑡=2

𝑇 𝑃 𝑋𝑡|𝑋𝑡−1

• Time Invariance:
̶ 𝑃 𝑋𝑡|𝑋𝑡−1 = 𝑃 𝑋′|𝑋

PGM, D. Koller
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2 Time-Slice Bayesian Network 

• is a for the
̶ It defines 𝑃 𝑋𝑡|𝑋𝑡−1
̶ Using a DAG as 𝑃 𝑋𝑡|𝑋𝑡−1 = ς𝑖=1

𝑁 𝑃 𝑋𝑡
𝑖|𝑃𝑎(𝑋𝑡

𝑖) PGM, D. Koller
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Dynamic Bayesian Network

• A DBN is a pair ℬ1, ℬ→

• is a Bayesian network
over 𝑋1
̶ defines prior 𝑃 𝑋1 or

over
states

• is a for the

PGM, D. Koller
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State-space models
• we assume that there is some underlying

hidden state of the world

̶ in the controlled case, the hidden state is a

function of our inputs

̶ the hidden state evolves in time

̶ the hidden state generates observations

• In other word: A state-space model is a model

of how 𝑋𝑡 generates or “causes” 𝑌𝑡 and 𝑋𝑡+1

• Mainly: the goal of inference is to invert this

mapping

̶ i.e.: to infer 𝑋1:𝑡 given 𝑌1:𝑡

K. P. Murphy
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State-space models

• Any state-space model must define
̶ a prior over states, 𝑃 𝑋1
̶ state-transition function, 𝑃 𝑋𝑡|𝑋𝑡−1
̶ observation function, 𝑃 𝑌𝑡|𝑋𝑡

• In the controlled case, these become
̶ 𝑃 𝑋𝑡|𝑋𝑡−1, 𝑈𝑡
̶ 𝑃 𝑌𝑡|𝑋𝑡 , 𝑈𝑡 or 𝑃 𝑌𝑡|𝑋𝑡

K. P. Murphy

system model

Observation 
model
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State-space models
HMMs, KFMs

• the most common ways of representing state-space
models are

̶ Hidden Markov Models (HMMs)

̶ HMMs assume 𝑋𝑡 is a discrete random variable, 𝑋𝑡 ∈ 1,… , 𝐾

̶ There is no other restrictions on the transition or observation
function

̶ Kalman Filter Models (KFMs)

̶ KFMs assume 𝑋𝑡 is a vector of continuous random variables

𝑋𝑡 ∈ ℝ𝑁

̶ 𝑋1:𝑇 and 𝑌1:𝑇 are jointly Gaussian

K. P. Murphy
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Inference Patterns:
Filtering

• Filtering is common inference problem in

• recursively estimate the 𝑃 𝑋𝑡|𝑦1:𝑡 using
Bayes’ rule

• ෠𝑋𝑡|𝑡−1 = 𝑃 𝑋𝑡|𝑦1:𝑡−1
̶ ෠𝑋𝑡|𝑡−1 is called prior belief state at time t

• ෠𝑋𝑡|𝑡 = 𝑃 𝑋𝑡|𝑦1:𝑡−1, 𝑦𝑡 = 𝑃 𝑋𝑡|𝑦1:𝑡

• This task is traditionally called “filtering”
̶ because we are filtering out the noise from the observations

𝑡



10/26/2017 M.A Keyvanrad, Deep Learning  (Lecture 7, A quick review of PGMs) 45

Inference Patterns:
Smoothing

• sometimes we want to estimate the state of the past,
given all the evidence up to the current time

• 𝑃 𝑋𝑡−𝑙|𝑦1:𝑡 , ℓ > 0, ℓ is called lag
̶ This is traditionally called “ ”

• (fixed interval) Smoothing:
̶ in the offline case, we can compute:

̶ 𝑃 𝑋𝑡|𝑦1:𝑇 ; ∀ 1 ≤ 𝑡 ≤ 𝑇

𝑡

ℓ
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Inference Patterns:
Prediction

• we might want to predict the future

• 𝑃 𝑌𝑡+ℎ = 𝑦|𝑦1:𝑡 , 𝒽 > 0
̶ 𝒽 is how far we want to look-ahead

• once we have predicted the future hidden state
̶ we can easily convert this into a prediction about the

future observations

̶ by marginalizing out 𝑋𝑡+𝒽
𝑡

𝒽
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Inference Patterns:
Control

• We might want to achieve to some desired output in
the future

• 𝑌𝑡+ℎ is the desired output value

• Find the best control parameters over 𝑢𝑡

𝑡

𝒽

𝑢𝑡+1:𝑡+𝒽
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Inference Patterns:
Decoding

• The goal is to compute the

̶ computing the “most probable explanation”

• 𝑥1:𝑇
∗ = 𝑎𝑟𝑔 max

𝑥1:𝑇
𝑃(𝑥1:𝑇|𝑦1:𝑇)

𝑡 𝑇
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Inference Patterns:
Classification

• likelihood of a model, 𝑀, is 𝑃(𝑦1:𝑡|𝑀):

• we can classify a sequence as follows:

• 𝐶∗ 𝑦1:𝑇 = 𝑎𝑟𝑔max
𝐶

𝑃 𝑦1:𝑇 𝑀𝐶 𝑃(𝑀𝐶)

̶ 𝑃 𝑦1:𝑇 𝑀𝐶 is the likelihood according to the model for
class 𝐶

̶ 𝑃(𝑀𝐶) is the prior for class 𝐶

• This method has the advantage of being able to
handle sequences of variable-length
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Markov Networks or
Markov Random Fields

• undirected graphs

• The joint distribution of an MRF is
defined by:

𝑃 𝒳 =
1

𝑍
ෑ

𝑐∈𝒞

𝜙𝑐 𝒳𝑐

̶ 𝒞 is the set of maximal cliques

̶ 𝜙𝑐 𝒳𝑐 are potential functions over
cliques (𝑐 ∈ 𝒞)

̶ 𝒳𝑐 is the set of clique variables

̶ 𝑍 in the normalization factor:
K. P. Murphy

𝑍 =෍

𝒳

ෑ

𝑐∈𝒞

𝜙𝑐 𝒳𝑐

C. Bishop
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Cliques and Maximal Cliques
• Clique is a subset of a graph in which

all nodes are connected together

• In the following example:
̶ Cliques are: 𝑥1, 𝑥2 , 𝑥2, 𝑥4 , 𝑥3, 𝑥4 ,
𝑥1, 𝑥3 , 𝑥2, 𝑥3 , 𝑥1, 𝑥2, 𝑥3 ,
𝑥2, 𝑥3, 𝑥4

• In maximal cliques we can not add
any new node to the clique without
it ceasing to be a clique
̶ Maximal cliques are: 𝑥1, 𝑥2, 𝑥3 ,
𝑥2, 𝑥3, 𝑥4

C. Bishop
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The misconception example

M.A. K.

(C)

M.M. K.

(D)

M. F. D. 

(A)

E. K.

(B)

MFD EK 𝝍

0 0 30

0 1 5

1 0 1

1 1 10

EK MAK 𝝍

0 0 100

0 1 1

1 0 1

1 1 100

MAK MMK 𝝍

0 0 1

0 1 100

1 0 100

1 1 1

MMK MFD 𝝍

0 0 100

0 1 1

1 0 1

1 1 100

Affinity between 
values

neither of two have 
the misconception

Like to agree

Like to disagree
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The joint distribution

M.A. K.

(C)

M.M. K.

(D)

M. F. D. 

(A)

E. K.

(B)

A B

0 0 30

0 1 5

1 0 1

1 1 10

B C

0 0 100

0 1 1

1 0 1

1 1 100

C D

0 0 1

0 1 100

1 0 100

1 1 1

D A

0 0 100

0 1 1

1 0 1

1 1 100

෨𝑃 𝒳 =ෑ

𝑐∈𝒞

𝜙𝑐 𝒳𝑐

𝑍 =෍

𝒳

෨𝑃 𝒳

𝑃 𝒳 =
1

𝑍
ෑ

𝑐∈𝒞

𝜙𝑐 𝒳𝑐

D. Koller
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So, what do factors means?

• In your opinion, the factor
𝜙1 𝐴, 𝐵 is proportional to:

̶ The marginal probability
P 𝐴, 𝐵

̶ The conditional probability
P 𝐴|𝐵

̶ The conditional probability
P 𝐴, 𝐵|𝐶, 𝐷

M.A. K.

(C)

M.M. K.

(D)

M. F. D. 

(A)

E. K.

(B)

A B

0 0 30

0 1 5

1 0 1

1 1 10

B C

0 0 100

0 1 1

1 0 1

1 1 100

C D

0 0 1

0 1 100

1 0 100

1 1 1

D A

0 0 100

0 1 1

1 0 1

1 1 100

𝑃 𝒳 =
1

𝑍
ෑ

𝑐∈𝒞

𝜙𝑐 𝒳𝑐

∝
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So, what do factors means?

• PΦ 𝐴, 𝐵 ,Φ = 𝜙1, 𝜙2, 𝜙3, 𝜙4

M.A. K.

(C)

M.M. K.

(D)

M. F. D. 

(A)

E. K.

(B)

A B

0 0 30

0 1 5

1 0 1

1 1 10

B C

0 0 100

0 1 1

1 0 1

1 1 100

C D

0 0 1

0 1 100

1 0 100

1 1 1

D A

0 0 100

0 1 1

1 0 1

1 1 100

In the MRFs, there is not a natural
mapping between the probability
distribution and the factors that are
used to compose it.

D. Koller



OUTLINE • Probabilistic Graphical Models

• Bayesian Networks

• Dynamic Bayesian Networks

• Markov Random Fields
̶ Factorization property, cliques

̶ The misconception example

̶ Energy functions, Log-linear models
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Equivalent representation using 
energy functions

𝑃 𝒳 =
1

𝑍
ෑ

𝑐∈𝒞

𝜙𝑐 𝒳𝑐

• Energy function:
𝐸 𝒳𝑐 = − log 𝜙𝑐 𝒳𝑐

• Equivalent representation:

𝑃 𝒳 ∝ exp −෍

𝑐∈𝒞

𝐸 𝒳𝑐

ෑ

𝑐∈𝒞

exp −𝐸 𝒳𝑐

Gibbs distribution

Boltzmann distribution
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Log linear models

• A log linear model is defined by:
̶ a set of features ℱ 𝑓1 𝒳1 , … , 𝑓𝑘 𝒳𝑘

̶ a set of weights 𝑤1, … , 𝑤𝑘

• such that:

𝑃 𝒳 ∝ exp −෍

𝑖=1

𝑘

𝑤𝑖𝑓𝑖 𝒳𝑖

again 𝒳𝑖s are 
maximal cliques
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Image de-noising example

• Flipping pixel color prob. is 10%

• We have an array of noisy image pixels (𝑦𝑖s)

• We want to infer original image (𝑥𝑖s)

C. Bishop
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Image de-noising example,
embedding our prior knowledge

• 𝑦𝑖 and 𝑥𝑖s are strongly correlated
̶ (sine noise level is small)

• that neighboring pixels 𝑥𝑖 and 𝑥𝑗s in an image are strongly
correlated

• Construct an MRF using this prior knowledge

𝒙𝒊, {𝒊 ∈ 𝟏. . 𝑫} 𝒚𝒊, {𝒊 ∈ 𝟏. . 𝑫}
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Image de-noising example,
model as a pairwise MRF

• The graph has two types of cliques:
̶ each of which contains two variables

(a pairwise MRF)

̶ {𝑥𝑖 , 𝑦𝑖} and {𝑥𝑖 , 𝑥𝑗}

̶ 𝑥𝑖 ∈ −1, 1 , 𝑦𝑖 ∈ −1, 1

• −𝜂𝑥𝑖𝑦𝑖 𝜂 > 0

• −𝛽𝑥𝑖𝑥𝑗 𝛽 > 0

• 𝐸 𝑋, 𝑌 = ℎσ𝑖 𝑥𝑖 − 𝛽σ 𝑖,𝑗 𝑥𝑖𝑥𝑗 − 𝜂σ𝑖 𝑥𝑖𝑦𝑖

C. Bishop
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Image de-noising example,
inference using ICM 

• 𝐸 𝑋, 𝑌 = ℎσ𝑖 𝑥𝑖 − 𝛽σ 𝑖,𝑗 𝑥𝑖𝑥𝑗 − 𝜂σ𝑖 𝑥𝑖𝑦𝑖
̶ ℎ = 0, 𝛽 = 1.0, 𝜂 = 2.1

• 𝐸 𝑥𝑖 = −1 = −2.1 − −1 + 1 − 1 − 1 = −0.1

• 𝐸 𝑥𝑖 = 1 = 2.1 − 1 − 1 + 1 + 1 = 0.1

• 𝑝 ∝ exp −𝐸

𝑦𝑖 = −1

Now, what if 𝛽 = 0?
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Image de-noising example,
de-noising results

C. Bishop

Graph cut 
algorithm

ICM algorithm
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MRF Examples:
Boltzmann Machines

Wikipedia

Boltzmann Machine Restricted Boltzmann Machine

𝐸 𝑣, ℎ = −෍

𝑖

𝑎𝑖𝑣𝑖 − ෍

𝑗

𝑏𝑗ℎ𝑗 −෍

𝑖

෍

𝑗

𝑣𝑖𝑤𝑖,𝑗ℎ𝑗
𝐸 = − ቍቌ෍

𝑖<𝑗

𝑤𝑖𝑗𝑥𝑖𝑥𝑗 +෍

𝑖

𝜃𝑖𝑥𝑖
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