
Lecture 6: Value Function Approximation

Lecture 6: Value Function Approximation

David Silver

Lecture 6: Value Function Approximation

Outline

1 Introduction

2 Incremental Methods

3 Batch Methods

Lecture 6: Value Function Approximation

Introduction

Outline

1 Introduction

2 Incremental Methods

3 Batch Methods

Lecture 6: Value Function Approximation

Introduction

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.

Backgammon: 1020 states

Computer Go: 10170 states

Helicopter: continuous state space

How can we scale up the model-free methods for prediction and
control from the last two lectures?

Lecture 6: Value Function Approximation

Introduction

Large-Scale Reinforcement Learning

Reinforcement learning can be used to solve large problems, e.g.

Backgammon: 1020 states

Computer Go: 10170 states

Helicopter: continuous state space

How can we scale up the model-free methods for prediction and
control from the last two lectures?

Lecture 6: Value Function Approximation

Introduction

Value Function Approximation

So far we have represented value function by a lookup table

Every state s has an entry V (s)
Or every state-action pair s, a has an entry Q(s, a)

Problem with large MDPs:

There are too many states and/or actions to store in memory
It is too slow to learn the value of each state individually

Solution for large MDPs:

Estimate value function with function approximation

v̂(s,w) ≈ vπ(s)

or q̂(s, a,w) ≈ qπ(s, a)

Generalise from seen states to unseen states
Update parameter w using MC or TD learning

Lecture 6: Value Function Approximation

Introduction

Types of Value Function Approximation

s s sa

v(s,w) q(s,a,w) q(s,a1,w) q(s,am,w)…

w w w

^ ^ ^ ^

Lecture 6: Value Function Approximation

Introduction

Which Function Approximator?

There are many function approximators, e.g.

Linear combinations of features

Neural network

Decision tree

Nearest neighbour

Fourier / wavelet bases

...

Lecture 6: Value Function Approximation

Introduction

Which Function Approximator?

We consider differentiable function approximators, e.g.

Linear combinations of features

Neural network

Decision tree

Nearest neighbour

Fourier / wavelet bases

...

Furthermore, we require a training method that is suitable for
non-stationary, non-iid data

Lecture 6: Value Function Approximation

Incremental Methods

Outline

1 Introduction

2 Incremental Methods

3 Batch Methods

Lecture 6: Value Function Approximation

Incremental Methods

Gradient Descent

Gradient Descent

Let J(w) be a differentiable function of
parameter vector w

Define the gradient of J(w) to be

∇wJ(w) =

∂J(w)
∂w1

...
∂J(w)
∂wn

To find a local minimum of J(w)

Adjust w in direction of -ve gradient

∆w = −1

2
α∇wJ(w)

where α is a step-size parameter

!"#$%"&'(%")*+,#'-'!"#$%%" (%")*+,#'.+/0+,#

!"#$%&'('%$&#()&*+$,*$#&&-&$$$$."'%"$
'*$%-/0'*,('-*$.'("$("#$1)*%('-*$
,22&-3'/,(-& %,*$0#$)+#4$(-$
%&#,(#$,*$#&&-&$1)*%('-*$$$$$$$$$$$$$

!"#$2,&(',5$4'11#&#*(',5-1("'+$#&&-&$
1)*%('-*$$$$$$$$$$$$$$$$6$("#$7&,4'#*($
%,*$*-.$0#$)+#4$(-$)24,(#$("#$
'*(#&*,5$8,&',05#+$'*$("#$1)*%('-*$
,22&-3'/,(-& 9,*4$%&'('%:;$$$$$$

<&,4'#*($4#+%#*($=>?

Lecture 6: Value Function Approximation

Incremental Methods

Gradient Descent

Value Function Approx. By Stochastic Gradient Descent

Goal: find parameter vector w minimising mean-squared error
between approximate value fn v̂(s,w) and true value fn vπ(s)

J(w) = Eπ
[
(vπ(S)− v̂(S ,w))2

]
Gradient descent finds a local minimum

∆w = −1

2
α∇wJ(w)

= αEπ [(vπ(S)− v̂(S ,w))∇wv̂(S ,w)]

Stochastic gradient descent samples the gradient

∆w = α(vπ(S)− v̂(S ,w))∇wv̂(S ,w)

Expected update is equal to full gradient update

Lecture 6: Value Function Approximation

Incremental Methods

Linear Function Approximation

Feature Vectors

Represent state by a feature vector

x(S) =

x1(S)
...

xn(S)

For example:

Distance of robot from landmarks
Trends in the stock market
Piece and pawn configurations in chess

Lecture 6: Value Function Approximation

Incremental Methods

Linear Function Approximation

Linear Value Function Approximation

Represent value function by a linear combination of features

v̂(S ,w) = x(S)>w =
n∑

j=1

xj(S)wj

Objective function is quadratic in parameters w

J(w) = Eπ
[
(vπ(S)− x(S)>w)2

]
Stochastic gradient descent converges on global optimum

Update rule is particularly simple

∇wv̂(S ,w) = x(S)

∆w = α(vπ(S)− v̂(S ,w))x(S)

Update = step-size × prediction error × feature value

Lecture 6: Value Function Approximation

Incremental Methods

Linear Function Approximation

Table Lookup Features

Table lookup is a special case of linear value function
approximation

Using table lookup features

xtable(S) =

1(S = s1)
...

1(S = sn)

Parameter vector w gives value of each individual state

v̂(S ,w) =

1(S = s1)
...

1(S = sn)

 ·
w1

...
wn

Lecture 6: Value Function Approximation

Incremental Methods

Incremental Prediction Algorithms

Incremental Prediction Algorithms

Have assumed true value function vπ(s) given by supervisor

But in RL there is no supervisor, only rewards

In practice, we substitute a target for vπ(s)

For MC, the target is the return Gt

∆w = α(Gt − v̂(St ,w))∇wv̂(St ,w)

For TD(0), the target is the TD target Rt+1 + γv̂(St+1,w)

∆w = α(Rt+1 + γv̂(St+1,w)− v̂(St ,w))∇wv̂(St ,w)

For TD(λ), the target is the λ-return Gλ
t

∆w = α(Gλ
t − v̂(St ,w))∇wv̂(St ,w)

Lecture 6: Value Function Approximation

Incremental Methods

Incremental Prediction Algorithms

Monte-Carlo with Value Function Approximation

Return Gt is an unbiased, noisy sample of true value vπ(St)

Can therefore apply supervised learning to “training data”:

〈S1,G1〉, 〈S2,G2〉, ..., 〈ST ,GT 〉

For example, using linear Monte-Carlo policy evaluation

∆w = α(Gt − v̂(St ,w))∇wv̂(St ,w)

= α(Gt − v̂(St ,w))x(St)

Monte-Carlo evaluation converges to a local optimum

Even when using non-linear value function approximation

Lecture 6: Value Function Approximation

Incremental Methods

Incremental Prediction Algorithms

TD Learning with Value Function Approximation

The TD-target Rt+1 + γv̂(St+1,w) is a biased sample of true
value vπ(St)

Can still apply supervised learning to “training data”:

〈S1,R2 + γv̂(S2,w)〉, 〈S2,R3 + γv̂(S3,w)〉, ..., 〈ST−1,RT 〉

For example, using linear TD(0)

∆w = α(R + γv̂(S ′,w)− v̂(S ,w))∇wv̂(S ,w)

= αδx(S)

Linear TD(0) converges (close) to global optimum

Lecture 6: Value Function Approximation

Incremental Methods

Incremental Prediction Algorithms

TD(λ) with Value Function Approximation

The λ-return Gλ
t is also a biased sample of true value vπ(s)

Can again apply supervised learning to “training data”:〈
S1,G

λ
1

〉
,
〈
S2,G

λ
2

〉
, ...,

〈
ST−1,G

λ
T−1

〉
Forward view linear TD(λ)

∆w = α(Gλ
t − v̂(St ,w))∇wv̂(St ,w)

= α(Gλ
t − v̂(St ,w))x(St)

Backward view linear TD(λ)

δt = Rt+1 + γv̂(St+1,w)− v̂(St ,w)

Et = γλEt−1 + x(St)

∆w = αδtEt

Forward view and backward view linear TD(λ) are equivalent

Lecture 6: Value Function Approximation

Incremental Methods

Incremental Prediction Algorithms

TD(λ) with Value Function Approximation

The λ-return Gλ
t is also a biased sample of true value vπ(s)

Can again apply supervised learning to “training data”:〈
S1,G

λ
1

〉
,
〈
S2,G

λ
2

〉
, ...,

〈
ST−1,G

λ
T−1

〉
Forward view linear TD(λ)

∆w = α(Gλ
t − v̂(St ,w))∇wv̂(St ,w)

= α(Gλ
t − v̂(St ,w))x(St)

Backward view linear TD(λ)

δt = Rt+1 + γv̂(St+1,w)− v̂(St ,w)

Et = γλEt−1 + x(St)

∆w = αδtEt

Forward view and backward view linear TD(λ) are equivalent

Lecture 6: Value Function Approximation

Incremental Methods

Incremental Control Algorithms

Control with Value Function Approximation

qw = qπ

Starting w

π = ε-greedy(q w)

qw ≈ q*

Policy evaluation Approximate policy evaluation, q̂(·, ·,w) ≈ qπ

Policy improvement ε-greedy policy improvement

Lecture 6: Value Function Approximation

Incremental Methods

Incremental Control Algorithms

Action-Value Function Approximation

Approximate the action-value function

q̂(S ,A,w) ≈ qπ(S ,A)

Minimise mean-squared error between approximate
action-value fn q̂(S ,A,w) and true action-value fn qπ(S ,A)

J(w) = Eπ
[
(qπ(S ,A)− q̂(S ,A,w))2

]
Use stochastic gradient descent to find a local minimum

−1

2
∇wJ(w) = (qπ(S ,A)− q̂(S ,A,w))∇wq̂(S ,A,w)

∆w = α(qπ(S ,A)− q̂(S ,A,w))∇wq̂(S ,A,w)

Lecture 6: Value Function Approximation

Incremental Methods

Incremental Control Algorithms

Linear Action-Value Function Approximation

Represent state and action by a feature vector

x(S ,A) =

x1(S ,A)
...

xn(S ,A)

Represent action-value fn by linear combination of features

q̂(S ,A,w) = x(S ,A)>w =
n∑

j=1

xj(S ,A)wj

Stochastic gradient descent update

∇wq̂(S ,A,w) = x(S ,A)

∆w = α(qπ(S ,A)− q̂(S ,A,w))x(S ,A)

Lecture 6: Value Function Approximation

Incremental Methods

Incremental Control Algorithms

Incremental Control Algorithms

Like prediction, we must substitute a target for qπ(S ,A)
For MC, the target is the return Gt

∆w = α(Gt − q̂(St ,At ,w))∇wq̂(St ,At ,w)

For TD(0), the target is the TD target Rt+1 + γQ(St+1,At+1)

∆w = α(Rt+1 + γq̂(St+1,At+1,w)− q̂(St ,At ,w))∇wq̂(St ,At ,w)

For forward-view TD(λ), target is the action-value λ-return

∆w = α(qλt − q̂(St ,At ,w))∇wq̂(St ,At ,w)

For backward-view TD(λ), equivalent update is

δt = Rt+1 + γq̂(St+1,At+1,w)− q̂(St ,At ,w)

Et = γλEt−1 +∇wq̂(St ,At ,w)

∆w = αδtEt

Lecture 6: Value Function Approximation

Incremental Methods

Mountain Car

Linear Sarsa with Coarse Coding in Mountain Car

Lecture 6: Value Function Approximation

Incremental Methods

Mountain Car

Linear Sarsa with Radial Basis Functions in Mountain Car

Lecture 6: Value Function Approximation

Incremental Methods

Mountain Car

Study of λ: Should We Bootstrap?

Lecture 6: Value Function Approximation

Incremental Methods

Convergence

Baird’s Counterexample

Lecture 6: Value Function Approximation

Incremental Methods

Convergence

Parameter Divergence in Baird’s Counterexample

Lecture 6: Value Function Approximation

Incremental Methods

Convergence

Convergence of Prediction Algorithms

On/Off-Policy Algorithm Table Lookup Linear Non-Linear

On-Policy
MC 3 3 3

TD(0) 3 3 7

TD(λ) 3 3 7

Off-Policy
MC 3 3 3

TD(0) 3 7 7

TD(λ) 3 7 7

Lecture 6: Value Function Approximation

Incremental Methods

Convergence

Gradient Temporal-Difference Learning

TD does not follow the gradient of any objective function

This is why TD can diverge when off-policy or using
non-linear function approximation

Gradient TD follows true gradient of projected Bellman error

On/Off-Policy Algorithm Table Lookup Linear Non-Linear

On-Policy
MC 3 3 3

TD 3 3 7

Gradient TD 3 3 3

Off-Policy
MC 3 3 3

TD 3 7 7

Gradient TD 3 3 3

Lecture 6: Value Function Approximation

Incremental Methods

Convergence

Convergence of Control Algorithms

Algorithm Table Lookup Linear Non-Linear

Monte-Carlo Control 3 (3) 7

Sarsa 3 (3) 7

Q-learning 3 7 7

Gradient Q-learning 3 3 7

(3) = chatters around near-optimal value function

Lecture 6: Value Function Approximation

Batch Methods

Outline

1 Introduction

2 Incremental Methods

3 Batch Methods

Lecture 6: Value Function Approximation

Batch Methods

Batch Reinforcement Learning

Gradient descent is simple and appealing

But it is not sample efficient

Batch methods seek to find the best fitting value function

Given the agent’s experience (“training data”)

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Least Squares Prediction

Given value function approximation v̂(s,w) ≈ vπ(s)

And experience D consisting of 〈state, value〉 pairs

D = {〈s1, vπ1 〉, 〈s2, vπ2 〉, ..., 〈sT , vπT 〉}

Which parameters w give the best fitting value fn v̂(s,w)?

Least squares algorithms find parameter vector w minimising
sum-squared error between v̂(st ,w) and target values vπt ,

LS(w) =
T∑
t=1

(vπt − v̂(st ,w))2

= ED
[
(vπ − v̂(s,w))2

]

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Stochastic Gradient Descent with Experience Replay

Given experience consisting of 〈state, value〉 pairs

D = {〈s1, vπ1 〉, 〈s2, vπ2 〉, ..., 〈sT , vπT 〉}

Repeat:

1 Sample state, value from experience

〈s, vπ〉 ∼ D

2 Apply stochastic gradient descent update

∆w = α(vπ − v̂(s,w))∇wv̂(s,w)

Converges to least squares solution

wπ = argmin
w

LS(w)

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Stochastic Gradient Descent with Experience Replay

Given experience consisting of 〈state, value〉 pairs

D = {〈s1, vπ1 〉, 〈s2, vπ2 〉, ..., 〈sT , vπT 〉}

Repeat:

1 Sample state, value from experience

〈s, vπ〉 ∼ D

2 Apply stochastic gradient descent update

∆w = α(vπ − v̂(s,w))∇wv̂(s,w)

Converges to least squares solution

wπ = argmin
w

LS(w)

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Experience Replay in Deep Q-Networks (DQN)

DQN uses experience replay and fixed Q-targets

Take action at according to ε-greedy policy

Store transition (st , at , rt+1, st+1) in replay memory D
Sample random mini-batch of transitions (s, a, r , s ′) from D
Compute Q-learning targets w.r.t. old, fixed parameters w−

Optimise MSE between Q-network and Q-learning targets

Li (wi) = Es,a,r ,s′∼Di

[(
r + γ max

a′
Q(s ′, a′;w−i)− Q(s, a;wi)

)2
]

Using variant of stochastic gradient descent

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

DQN in Atari

End-to-end learning of values Q(s, a) from pixels s

Input state s is stack of raw pixels from last 4 frames

Output is Q(s, a) for 18 joystick/button positions

Reward is change in score for that step

Network architecture and hyperparameters fixed across all games

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

DQN Results in Atari

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

How much does DQN help?

Replay Replay No replay No replay
Fixed-Q Q-learning Fixed-Q Q-learning

Breakout 316.81 240.73 10.16 3.17

Enduro 1006.3 831.25 141.89 29.1

River Raid 7446.62 4102.81 2867.66 1453.02

Seaquest 2894.4 822.55 1003 275.81

Space Invaders 1088.94 826.33 373.22 301.99

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Linear Least Squares Prediction

Experience replay finds least squares solution

But it may take many iterations

Using linear value function approximation v̂(s,w) = x(s)>w

We can solve the least squares solution directly

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Linear Least Squares Prediction (2)

At minimum of LS(w), the expected update must be zero

ED [∆w] = 0

α

T∑
t=1

x(st)(vπ
t − x(st)

>w) = 0

T∑
t=1

x(st)v
π
t =

T∑
t=1

x(st)x(st)
>w

w =

(
T∑
t=1

x(st)x(st)
>

)−1 T∑
t=1

x(st)v
π
t

For N features, direct solution time is O(N3)

Incremental solution time is O(N2) using Shermann-Morrison

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Linear Least Squares Prediction Algorithms

We do not know true values vπt

In practice, our “training data” must use noisy or biased
samples of vπt

LSMC Least Squares Monte-Carlo uses return
vπt ≈ Gt

LSTD Least Squares Temporal-Difference uses TD target
vπt ≈ Rt+1 + γv̂(St+1,w)

LSTD(λ) Least Squares TD(λ) uses λ-return
vπt ≈ Gλ

t

In each case solve directly for fixed point of MC / TD / TD(λ)

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Linear Least Squares Prediction Algorithms (2)

LSMC 0 =
T∑
t=1

α(Gt − v̂(St ,w))x(St)

w =

(
T∑
t=1

x(St)x(St)
>

)−1 T∑
t=1

x(St)Gt

LSTD 0 =
T∑
t=1

α(Rt+1 + γv̂(St+1,w)− v̂(St ,w))x(St)

w =

(
T∑
t=1

x(St)(x(St)− γx(St+1))>

)−1 T∑
t=1

x(St)Rt+1

LSTD(λ) 0 =
T∑
t=1

αδtEt

w =

(
T∑
t=1

Et(x(St)− γx(St+1))>

)−1 T∑
t=1

EtRt+1

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Prediction

Convergence of Linear Least Squares Prediction Algorithms

On/Off-Policy Algorithm Table Lookup Linear Non-Linear

On-Policy

MC 3 3 3

LSMC 3 3 -
TD 3 3 7

LSTD 3 3 -

Off-Policy
MC 3 3 3

LSMC 3 3 -
TD 3 7 7

LSTD 3 3 -

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Control

Least Squares Policy Iteration

Starting w

π = greedy(q w)

qw = qπ

qw ≈ q*

Policy evaluation Policy evaluation by least squares Q-learning

Policy improvement Greedy policy improvement

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Control

Least Squares Action-Value Function Approximation

Approximate action-value function qπ(s, a)

using linear combination of features x(s, a)

q̂(s, a,w) = x(s, a)>w ≈ qπ(s, a)

Minimise least squares error between q̂(s, a,w) and qπ(s, a)

from experience generated using policy π

consisting of 〈(state, action), value〉 pairs

D = {〈(s1, a1), vπ1 〉, 〈(s2, a2), vπ2 〉, ..., 〈(sT , aT), vπT 〉}

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Control

Least Squares Control

For policy evaluation, we want to efficiently use all experience

For control, we also want to improve the policy

This experience is generated from many policies

So to evaluate qπ(S ,A) we must learn off-policy

We use the same idea as Q-learning:

Use experience generated by old policy
St ,At ,Rt+1,St+1 ∼ πold
Consider alternative successor action A′ = πnew (St+1)
Update q̂(St ,At ,w) towards value of alternative action
Rt+1 + γq̂(St+1,A

′,w))

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Control

Least Squares Q-Learning

Consider the following linear Q-learning update

δ = Rt+1 + γq̂(St+1, π(St+1),w)− q̂(St ,At ,w)

∆w = αδx(St ,At)

LSTDQ algorithm: solve for total update = zero

0 =
T∑
t=1

α(Rt+1 + γq̂(St+1, π(St+1),w)− q̂(St ,At ,w))x(St ,At)

w =

(
T∑
t=1

x(St ,At)(x(St ,At)− γx(St+1, π(St+1)))>

)−1 T∑
t=1

x(St ,At)Rt+1

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Control

Least Squares Policy Iteration Algorithm

The following pseudocode uses LSTDQ for policy evaluation

It repeatedly re-evaluates experience D with different policies

function LSPI-TD(D, π0)
π′ ← π0
repeat

π ← π′

Q ← LSTDQ(π,D)
for all s ∈ S do

π′(s)← argmax
a∈A

Q(s, a)

end for
until (π ≈ π′)
return π

end function

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Control

Convergence of Control Algorithms

Algorithm Table Lookup Linear Non-Linear

Monte-Carlo Control 3 (3) 7

Sarsa 3 (3) 7

Q-learning 3 7 7

LSPI 3 (3) -

(3) = chatters around near-optimal value function

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Control

Chain Walk Example
Least-Squares Policy Iteration

1 2 3 4
R R R

LLLL

R

0.9 0.9 0.9

0.9

0.90.90.9

0.9

0.1

0.1 0.1 0.1

0.1

0.10.10.1

r=0 r=1 r=1 r=0

Figure 9: The problematic MDP.

where s is the state number. LSPI was applied on the same problem using the same basis
functions repeated for each of the two actions so that each action gets its own parameters:10

φ(s, a) =

I(a = L) × 1
I(a = L) × s
I(a = L) × s2

I(a = R) × 1
I(a = R) × s
I(a = R) × s2

.

LSPI typically finds the optimal policy for this problem in 4 or 5 iterations. Samples for
each run were collected in advance by choosing actions uniformly at random for about 25
(or more) steps and the same sample set was used throughout all LSPI iterations in the run.
Figure 10 shows the iterations of one run of LSPI on a training set of 50 samples. States
are shown on the horizontal axis and Q values on the vertical axis. The approximations
are shown with solid lines, whereas the exact values are connected with dashed lines. The
values for action L are marked with ◦ and for action R with ∗. LSPI finds the optimal
policy by the 2nd iteration, but it does not terminate until the 4th iteration, at which point
the successive parameters (3rd and 4th iterations) are approximately equal. Notice that
the approximations capture the qualitative structure of the value function, although the
quantitative error is fairly big. The state visitation distribution for this training set was
(0.24, 0.14, 0.28, 0.34). Although it was not perfectly uniform, it was “flat” enough to
prevent an extremely uneven allocation of approximation errors over the state-action space.

LSPI was also tested on variants of the chain walk problem with more states and different
reward schemes to better understand and illustrate its behavior. Figure 11 shows a run of
LSPI on a 20-state chain with the same dynamics as above and a reward of +1 given only
at the boundaries (states 1 and 20). The optimal policy in this case is to go left in states
1–10 and right in states 11–20. LSPI converged to the optimal policy after 8 iterations
using a single set of samples collected from a single episodes in which actions were chosen
uniformly at random for 5000 steps. A polynomial of degree 4 was used for approximating
the value function for each of the two actions, giving a block of 5 basis functions per action,

10. I is the indicator function: I(true) = 1 and I(false) = 0.

1131

Consider the 50 state version of this problem

Reward +1 in states 10 and 41, 0 elsewhere

Optimal policy: R (1-9), L (10-25), R (26-41), L (42, 50)

Features: 10 evenly spaced Gaussians (σ = 4) for each action

Experience: 10,000 steps from random walk policy

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Control

LSPI in Chain Walk: Action-Value Function
Least-Squares Policy Iteration

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

Iteration1
5 10 15 20 25 30 35 40 45 50

−0.5
0

0.5
1

1.5

Iteration2

5 10 15 20 25 30 35 40 45 50
0

2

4

Iteration3
5 10 15 20 25 30 35 40 45 50

0

2

4

Iteration4

5 10 15 20 25 30 35 40 45 50
0

2

4

Iteration5
5 10 15 20 25 30 35 40 45 50

0

2

4

Iteration6

5 10 15 20 25 30 35 40 45 50
0

2

4

Iteration7

Iteration1
10 20 30 40 50

Iteration2
10 20 30 40 50

Iteration3
10 20 30 40 50

Iteration4
10 20 30 40 50

Iteration5
10 20 30 40 50

Iteration6
10 20 30 40 50

Iteration7
10 20 30 40 50

Figure 13: LSPI iterations on a 50-state chain with a radial basis function approximator
(reward only in states 10 and 41). Top: The state-action value function of the
policy being evaluated in each iteration (LSPI approximation - solid lines; exact
values - dotted lines). Bottom: The improved policy after each iteration (R
action - dark/red shade; L action - light/blue shade; LSPI - top stripe; exact -
bottom stripe).

1135

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Control

LSPI in Chain Walk: Policy

Least-Squares Policy Iteration

5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

Iteration1
5 10 15 20 25 30 35 40 45 50

−0.5
0

0.5
1

1.5

Iteration2

5 10 15 20 25 30 35 40 45 50
0

2

4

Iteration3
5 10 15 20 25 30 35 40 45 50

0

2

4

Iteration4

5 10 15 20 25 30 35 40 45 50
0

2

4

Iteration5
5 10 15 20 25 30 35 40 45 50

0

2

4

Iteration6

5 10 15 20 25 30 35 40 45 50
0

2

4

Iteration7

Iteration1
10 20 30 40 50

Iteration2
10 20 30 40 50

Iteration3
10 20 30 40 50

Iteration4
10 20 30 40 50

Iteration5
10 20 30 40 50

Iteration6
10 20 30 40 50

Iteration7
10 20 30 40 50

Figure 13: LSPI iterations on a 50-state chain with a radial basis function approximator
(reward only in states 10 and 41). Top: The state-action value function of the
policy being evaluated in each iteration (LSPI approximation - solid lines; exact
values - dotted lines). Bottom: The improved policy after each iteration (R
action - dark/red shade; L action - light/blue shade; LSPI - top stripe; exact -
bottom stripe).

1135

Lecture 6: Value Function Approximation

Batch Methods

Least Squares Control

Questions?

