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State of the Art

Why Study Classic Games?

Simple rules, deep concepts

Studied for hundreds or thousands of years

Meaningful IQ test

Drosophila of artificial intelligence

Microcosms encapsulating real world issues

Games are fun!
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State of the Art

AI in Games: State of the Art

Program Level of Play Program to Achieve Level

Checkers Perfect Chinook
Chess Superhuman Deep Blue

Othello Superhuman Logistello
Backgammon Superhuman TD-Gammon

Scrabble Superhuman Maven
Go Grandmaster MoGo1, Crazy Stone2, Zen3

Poker4 Superhuman Polaris

19× 9
29× 9 and 19× 19
319× 19
4Heads-up Limit Texas Hold’em
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State of the Art

RL in Games: State of the Art

Program Level of Play RL Program to Achieve Level

Checkers Perfect Chinook
Chess International Master KnightCap / Meep

Othello Superhuman Logistello
Backgammon Superhuman TD-Gammon

Scrabble Superhuman Maven
Go Grandmaster MoGo1, Crazy Stone2, Zen3

Poker4 Superhuman SmooCT

19× 9
29× 9 and 19× 19
319× 19
4Heads-up Limit Texas Hold’em
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Game Theory

Optimality in Games

What is the optimal policy πi for ith player?

If all other players fix their policies π−i

Best response πi∗(π
−i ) is optimal policy against those policies

Nash equilibrium is a joint policy for all players

πi = πi∗(π
−i )

such that every player’s policy is a best response

i.e. no player would choose to deviate from Nash
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Game Theory

Single-Agent and Self-Play Reinforcement Learning

Best response is solution to single-agent RL problem

Other players become part of the environment
Game is reduced to an MDP
Best response is optimal policy for this MDP

Nash equilibrium is fixed-point of self-play RL

Experience is generated by playing games between agents

a1 ∼ π1, a2 ∼ π2, ...

Each agent learns best response to other players
One player’s policy determines another player’s environment
All players are adapting to each other
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Game Theory

Two-Player Zero-Sum Games

We will focus on a special class of games:

A two-player game has two (alternating) players

We will name player 1 white and player 2 black

A zero sum game has equal and opposite rewards for black
and white

R1 + R2 = 0

We consider methods for finding Nash equilibria in these games

Game tree search (i.e. planning)

Self-play reinforcement learning
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Game Theory

Perfect and Imperfect Information Games

A perfect information or Markov game is fully observed

Chess
Checkers
Othello
Backgammon
Go

An imperfect information game is partially observed

Scrabble
Poker

We focus first on perfect information games
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Minimax Search

Minimax

A value function defines the expected total reward given joint
policies π =

〈
π1, π2

〉
vπ(s) = Eπ [Gt | St = s]

A minimax value function maximizes white’s expected return
while minimizing black’s expected return

v∗(s) = max
π1

min
π2

vπ(s)

A minimax policy is a joint policy π =
〈
π1, π2

〉
that achieves

the minimax values

There is a unique minimax value function

A minimax policy is a Nash equilibrium
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Minimax Search

Minimax Search

Minimax values can be
found by depth-first
game-tree search

Introduced by Claude
Shannon: Programming a
Computer for Playing Chess

Ran on paper!
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Minimax Search

Minimax Search Example

+5 +9 -6 -4-4 -2+7 +3

max

min

max

min

a1 a2

b1 b2 b1 b2

a1 a2 a1 a2 a1 a2 a1 a2
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Minimax Search

Minimax Search Example

+7 -2 +9 -4

+5 +9 -6 -4-4 -2+7 +3

max

min

max

min

a1 a2

b1 b2 b1 b2

a1 a2 a1 a2 a1 a2 a1 a2
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Minimax Search

Minimax Search Example

-2

+7 -2 +9 -4

-4

+5 +9 -6 -4-4 -2+7 +3

max

min

max

min

a1 a2

b1 b2 b1 b2

a1 a2 a1 a2 a1 a2 a1 a2
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Minimax Search

Minimax Search Example

-2

-2

+7 -2 +9 -4

-4

+5 +9 -6 -4-4 -2+7 +3

max

min

max

min

a1 a2

b1 b2 b1 b2

a1 a2 a1 a2 a1 a2 a1 a2
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Minimax Search

Value Function in Minimax Search

Search tree grows exponentially

Impractical to search to the end of the game

Instead use value function approximator v(s,w) ≈ v∗(s)

aka evaluation function, heuristic function

Use value function to estimate minimax value at leaf nodes

Minimax search run to fixed depth with respect to leaf values
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Minimax Search

Binary-Linear Value Function

Binary feature vector x(s): e.g. one feature per piece

Weight vector w: e.g. value of each piece

Position is evaluated by summing weights of active features

v(s,w) = x(s) · w =

1

v(s,w) = x(s) · w =

v(s,w) = 5 + 3� 5 = 3

1
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Minimax Search

Deep Blue

Knowledge

8000 handcrafted chess features
Binary-linear value function
Weights largely hand-tuned by human experts

Search

High performance parallel alpha-beta search
480 special-purpose VLSI chess processors
Searched 200 million positions/second
Looked ahead 16-40 ply

Results

Defeated human champion Garry Kasparov 4-2 (1997)
Most watched event in internet history
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Minimax Search

Chinook

Knowledge

Binary-linear value function
21 knowledge-based features (position, mobility, ...)
x4 phases of the game

Search

High performance alpha-beta search
Retrograde analysis

Search backward from won positions
Store all winning positions in lookup tables
Plays perfectly from last n checkers

Results
Defeated Marion Tinsley in world championship 1994

won 2 games but Tinsley withdrew for health reasons

Chinook solved Checkers in 2007

perfect play against God
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Self-Play Reinforcement Learning

Self-Play Temporal-Difference Learning

Apply value-based RL algorithms to games of self-play

MC: update value function towards the return Gt

∆w = α(Gt − v(St ,w))∇wv(St ,w)

TD(0): update value function towards successor value v(St+1)

∆w = α(v(St+1,w)− v(St ,w))∇wv(St ,w)

TD(λ): update value function towards the λ-return Gλ
t

∆w = α(Gλ
t − v(St ,w))∇wv(St ,w)
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Self-Play Reinforcement Learning

Policy Improvement with Afterstates

For deterministic games it is sufficient to estimate v∗(s)

This is because we can efficiently evaluate the afterstate

q∗(s, a) = v∗(succ(s, a))

Rules of the game define the successor state succ(s, a)

Actions are selected e.g. by min/maximising afterstate value

At = argmax
a

v∗(succ(St , a)) for white

At = argmin
a

v∗(succ(St , a)) for black

This improves joint policy for both players
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Self-Play Reinforcement Learning

Self-Play TD in Othello: Logistello

Logistello created its own features

Start with raw input features, e.g.
“black stone at C1?”

Construct new features by
conjunction/disjunction

Created 1.5 million features in
different configurations

Binary-linear value function using
these features
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Self-Play Reinforcement Learning

Reinforcement Learning in Logistello

Logistello used generalised policy iteration

Generate batch of self-play games from current policy

Evaluate policies using Monte-Carlo (regress to outcomes)

Greedy policy improvement to generate new players

Results

Defeated World Champion Takeshi Murukami 6-0
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Self-Play Reinforcement Learning

TD-Gammon

TD Gammon: Non-Linear Value Function Approximation

 B
bar 25 24  23 22 21  20 19  18 17 16  15 14 13  12 11  10   9   8   7    6   5   4    3   2    1   0  W

bar 

v(s, w)

w

s
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Self-Play Reinforcement Learning

TD-Gammon

Self-Play TD in Backgammon: TD-Gammon

Initialised with random weights

Trained by games of self-play

Using non-linear temporal-difference learning

δt = v(St+1,w)− v(St ,w)

∆w = αδt∇wv(St ,w)

Greedy policy improvement (no exploration)

Algorithm always converged in practice

Not true for other games



Lecture 10: Classic Games

Self-Play Reinforcement Learning

TD-Gammon

TD Gammon: Results

Zero expert knowledge =⇒ strong intermediate play

Hand-crafted features =⇒ advanced level of play (1991)

2-ply search =⇒ strong master play (1993)

3-ply search =⇒ superhuman play (1998)

Defeated world champion Luigi Villa 7-1 (1992)
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Self-Play Reinforcement Learning

TD-Gammon

New TD-Gammon Results
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Combining Reinforcement Learning and Minimax Search

Simple TD

TD: update value towards successor value

Introduction
Background

TreeStrap
Results

Summary

TD
TD-Leaf
Caveats

Self play with TD Learning

I Famously applied to Backgammon (TD-Gammon) by
Tesauro

I Simple greedy action selection sufficed during training
I ...unfortunately, not so successful everywhere (e.g.

Chess).

time = t time = t+1 time = t+2 time = t+3

s1 s2 s3 s4

Joel Veness†�, David Silver‡ , Will Uther�†, Alan Blair†� Bootstrapping from Game Tree Search

Value function approximator v(s,w) with parameters w
Value function backed up from raw value at next state

v(St ,w)← v(St+1,w)

First learn value function by TD learning

Then use value function in minimax search (no learning)

v+(St ,w) = minimax
s∈leaves(St)

v(s,w)
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Combining Reinforcement Learning and Minimax Search

Simple TD: Results

Othello: superhuman performance in Logistello

Backgammon: superhuman performance in TD-Gammon

Chess: poor performance

Checkers: poor performance

In chess tactics seem necessary to find signal in position

e.g. hard to find checkmates without search

Can we learn directly from minimax search values?
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Combining Reinforcement Learning and Minimax Search

TD Root

TD root: update value towards successor search value

St St+1

Search value is computed at root position St

v+(St ,w) = minimax
s∈leaves(St)

v(s,w)

Value function backed up from search value at next state

v(St ,w)← v+(St+1,w) = v(l+(St+1),w)

Where l+(s) is the leaf node achieving minimax value from s
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Combining Reinforcement Learning and Minimax Search

TD Root in Checkers: Samuel’s Player

First ever TD learning algorithm (Samuel 1959)

Applied to a Checkers program that learned by self-play

Defeated an amateur human player

Also used other ideas we might now consider strange
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Combining Reinforcement Learning and Minimax Search

TD Leaf

TD leaf: update search value towards successor search value

St St+1

Search value computed at current and next step

v+(St ,w) = minimax
s∈leaves(St)

v(s,w), v+(St+1,w) = minimax
s∈leaves(St+1)

v(s,w)

Search value at step t backed up from search value at t + 1

v+(St ,w)← v+(St+1,w)

=⇒ v(l+(St),w)← v(l+(St+1),w)
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Combining Reinforcement Learning and Minimax Search

TD leaf in Chess: Knightcap

Learning

Knightcap trained against expert opponent
Starting from standard piece values only
Learnt weights using TD leaf

Search

Alpha-beta search with standard enhancements

Results

Achieved master level play after a small number of games
Was not effective in self-play
Was not effective without starting from good weights
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Combining Reinforcement Learning and Minimax Search

TD leaf in Checkers: Chinook

Original Chinook used hand-tuned weights

Later version was trained by self-play

Using TD leaf to adjust weights

Except material weights which were kept fixed

Self-play weights performed ≥ hand-tuned weights

i.e. learning to play at superhuman level
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Combining Reinforcement Learning and Minimax Search

TreeStrap

TreeStrap: update search values towards deeper search values

Minimax search value computed at all nodes s ∈ nodes(St)

Value backed up from search value, at same step, for all nodes

v(s,w)← v+(s,w)

=⇒ v(s,w)← v(l+(s),w)
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Combining Reinforcement Learning and Minimax Search

Treestrap in Chess: Meep

Binary linear value function with 2000 features

Starting from random initial weights (no prior knowledge)

Weights adjusted by TreeStrap

Won 13/15 vs. international masters

Effective in self-play

Effective from random initial weights
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Combining Reinforcement Learning and Minimax Search

Simulation-Based Search

Self-play reinforcement learning can replace search

Simulate games of self-play from root state St
Apply RL to simulated experience

Monte-Carlo Control =⇒ Monte-Carlo Tree Search
Most effective variant is UCT algorithm

Balance exploration/exploitation in each node using UCB

Self-play UCT converges on minimax values

Perfect information, zero-sum, 2-player games
Imperfect information: see next section
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Combining Reinforcement Learning and Minimax Search

Performance of MCTS in Games

MCTS is best performing method in many challenging games

Go (last lecture)
Hex
Lines of Action
Amazons

In many games simple Monte-Carlo search is enough

Scrabble
Backgammon
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Combining Reinforcement Learning and Minimax Search

Simple Monte-Carlo Search in Maven

Learning

Maven evaluates moves by score + v(rack)
Binary-linear value function of rack
Using one, two and three letter features
Q??????, QU?????, III????
Learnt by Monte-Carlo policy iteration (cf. Logistello)

Search

Roll-out moves by imagining n steps of self-play
Evaluate resulting position by score + v(rack)
Score move by average evaluation in rollouts
Select and play highest scoring move
Specialised endgame search using B*
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Combining Reinforcement Learning and Minimax Search

Maven: Results

Maven beat world
champion Adam
Logan 9-5

Here Maven predicted
endgame to finish
with MOUTHPART

Analysis showed
Maven had error rate
of 3 points per game

244 B. Sheppard / Artificial Intelligence 134 (2002) 241–275

Fig. 1. MAVEN versus Adam Logan (exhibition match, AAAI-98). MAVEN’s last move is MOUTHPART at 1A.

blank for the P). In a Scrabble analysis, a move is usually annotated with a triplet that
contains the move’s location, score, and the resulting rack leave (see below); sometimes
the third coordinate is suppressed.
There are several Scrabble terms used in this paper. The set of tiles that a player holds

is called the rack. The set of tiles left after a player has moved is called the rack leave.
A bingo is a move where a player uses all seven of the rack tiles in a single move. For
achieving this feat a player earns a 50-point bonus. For example, MAVEN’s move in Fig. 1
(i.e., playing “UTH?ART”, where the ‘?’ represents the blank) is a bingo (and also happens
to end the game, see Appendix A). A hot spot is a place on the board where high-scoring
plays are likely.
In general, on a given turn a player wants to score as many points as possible. This

means that exploiting squares with high bonus points is preferable, as is using letters with
a high value. Of course, one should have adequate knowledge of the playable words and a
good estimate of the potential use of the letters left.
The human cognitive problem of finding high-scoring plays is very different from the

programming problem of generating them. For a human the process involves anagramming
the contents of the rack and looking for hot spots. There are a variety of methods that help
experts carry out this process.
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Reinforcement Learning in Imperfect-Information Games

Game-Tree Search in Imperfect Information Games

Players have different information states and therefore
separate search trees

There is one node for each information state

summarising what a player knows
e.g. the cards they have seen

Many real states may share the same information state

May also aggregate states e.g. with similar value
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Reinforcement Learning in Imperfect-Information Games

Solution Methods for Imperfect Information Games

Information-state game tree may be solved by:

Iterative forward-search methods

e.g. Counterfactual regret minimization
“Perfect” play in Poker (heads-up limit Hold’em)

Self-play reinforcement learning

e.g. Smooth UCT

3 silver medals in two- and three-player Poker (limit Hold’em)
Outperformed massive-scale forward-search agents
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Reinforcement Learning in Imperfect-Information Games

Smooth UCT Search

Apply MCTS to information-state game tree

Variant of UCT, inspired by game-theoretic Fictitious Play

Agents learn against and respond to opponents’ average
behaviour

Extract average strategy from nodes’ action counts,
πavg (a|s) = N(s,a)

N(s) .

At each node, pick actions according to

A ∼
{

UCT(S), with probability η

πavg (·|S), with probability 1− η

Empirically, in variants of Poker:

Naive MCTS diverged
Smooth UCT converged to Nash equilibrium
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Conclusions

RL in Games: A Successful Recipe

Program Input features Value Fn RL Training Search

Chess Binary Linear TreeStrap Self-Play αβ
Meep Pieces, pawns, ... / Expert

Checkers Binary Linear TD leaf Self-Play αβ
Chinook Pieces, ...

Othello Binary Linear MC Self-Play αβ
Logistello Disc configs

Backgammon Binary Neural TD(λ) Self-Play αβ /
TD Gammon Num checkers network MC

Go Binary Linear TD Self-Play MCTS
MoGo Stone patterns

Scrabble Binary Linear MC Self-Play MC
Maven Letters on rack search

Limit Hold’em Binary Linear MCTS Self-Play -
SmooCT Card abstraction


